5.4 怎么避免死锁?

释放双眼,带上耳机,听听看~!

面试过程中,死锁也是高频的考点,因为如果线上环境真多发生了死锁,那真的出大事了。

这次,我们就来系统地聊聊死锁的问题。

  • 死锁的概念;
  • 模拟死锁问题的产生;
  • 利用工具排查死锁问题;
  • 避免死锁问题的发生;

#死锁的概念

在多线程编程中,我们为了防止多线程竞争共享资源而导致数据错乱,都会在操作共享资源之前加上互斥锁,只有成功获得到锁的线程,才能操作共享资源,获取不到锁的线程就只能等待,直到锁被释放。

那么,当两个线程为了保护两个不同的共享资源而使用了两个互斥锁,那么这两个互斥锁应用不当的时候,可能会造成两个线程都在等待对方释放锁,在没有外力的作用下,这些线程会一直相互等待,就没办法继续运行,这种情况就是发生了死锁

举个例子,小林拿了小美房间的钥匙,而小林在自己的房间里,小美拿了小林房间的钥匙,而小美也在自己的房间里。如果小林要从自己的房间里出去,必须拿到小美手中的钥匙,但是小美要出去,又必须拿到小林手中的钥匙,这就形成了死锁。

死锁只有同时满足以下四个条件才会发生:

  • 互斥条件;
  • 持有并等待条件;
  • 不可剥夺条件;
  • 环路等待条件;

#互斥条件

互斥条件是指多个线程不能同时使用同一个资源

比如下图,如果线程 A 已经持有的资源,不能再同时被线程 B 持有,如果线程 B 请求获取线程 A 已经占用的资源,那线程 B 只能等待,直到线程 A 释放了资源。

5.4 怎么避免死锁?

#持有并等待条件

持有并等待条件是指,当线程 A 已经持有了资源 1,又想申请资源 2,而资源 2 已经被线程 C 持有了,所以线程 A 就会处于等待状态,但是线程 A 在等待资源 2 的同时并不会释放自己已经持有的资源 1

5.4 怎么避免死锁?

#不可剥夺条件

不可剥夺条件是指,当线程已经持有了资源 ,在自己使用完之前不能被其他线程获取,线程 B 如果也想使用此资源,则只能在线程 A 使用完并释放后才能获取。

5.4 怎么避免死锁?

#环路等待条件

环路等待条件指的是,在死锁发生的时候,两个线程获取资源的顺序构成了环形链

比如,线程 A 已经持有资源 2,而想请求资源 1, 线程 B 已经获取了资源 1,而想请求资源 2,这就形成资源请求等待的环形图。

5.4 怎么避免死锁?

#模拟死锁问题的产生

Talk is cheap. Show me the code.

下面,我们用代码来模拟死锁问题的产生。

首先,我们先创建 2 个线程,分别为线程 A 和 线程 B,然后有两个互斥锁,分别是 mutex_A 和 mutex_B,代码如下:

pthread_mutex_t mutex_A = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t mutex_B = PTHREAD_MUTEX_INITIALIZER;

int main()
{
    pthread_t tidA, tidB;
    
    //创建两个线程
    pthread_create(&tidA, NULL, threadA_proc, NULL);
    pthread_create(&tidB, NULL, threadB_proc, NULL);
    
    pthread_join(tidA, NULL);
    pthread_join(tidB, NULL);
    
    printf("exitn");
    
    return 0;
}

接下来,我们看下线程 A 函数做了什么。

//线程函数 A
void *threadA_proc(void *data)
{
    printf("thread A waiting get ResourceA n");
    pthread_mutex_lock(&mutex_A);
    printf("thread A got ResourceA n");
    
    sleep(1);
    
    printf("thread A waiting get ResourceB n");
    pthread_mutex_lock(&mutex_B);
    printf("thread A got ResourceB n");

    pthread_mutex_unlock(&mutex_B);
    pthread_mutex_unlock(&mutex_A);
    return (void *)0;
}

可以看到,线程 A 函数的过程:

  • 先获取互斥锁 A,然后睡眠 1 秒;
  • 再获取互斥锁 B,然后释放互斥锁 B;
  • 最后释放互斥锁 A;
//线程函数 B
void *threadB_proc(void *data)
{
    printf("thread B waiting get ResourceB n");
    pthread_mutex_lock(&mutex_B);
    printf("thread B got ResourceB n");
    
    sleep(1);
    
    printf("thread B waiting  get ResourceA n");
    pthread_mutex_lock(&mutex_A);
    printf("thread B got ResourceA n");
    
    pthread_mutex_unlock(&mutex_A);
    pthread_mutex_unlock(&mutex_B);
    return (void *)0;
}

可以看到,线程 B 函数的过程:

  • 先获取互斥锁 B,然后睡眠 1 秒;
  • 再获取互斥锁 A,然后释放互斥锁 A;
  • 最后释放互斥锁 B;

然后,我们运行这个程序,运行结果如下:

thread B waiting get ResourceB 
thread B got ResourceB 
thread A waiting get ResourceA 
thread A got ResourceA 
thread B waiting get ResourceA 
thread A waiting get ResourceB 
// 阻塞中。。。

可以看到线程 B 在等待互斥锁 A 的释放,线程 A 在等待互斥锁 B 的释放,双方都在等待对方资源的释放,很明显,产生了死锁问题。


#利用工具排查死锁问题

如果你想排查你的 Java 程序是否死锁,则可以使用 jstack 工具,它是 jdk 自带的线程堆栈分析工具。

由于小林的死锁代码例子是 C 写的,在 Linux 下,我们可以使用 pstack + gdb 工具来定位死锁问题。

pstack 命令可以显示每个线程的栈跟踪信息(函数调用过程),它的使用方式也很简单,只需要 pstack <pid> 就可以了。

那么,在定位死锁问题时,我们可以多次执行 pstack 命令查看线程的函数调用过程,多次对比结果,确认哪几个线程一直没有变化,且是因为在等待锁,那么大概率是由于死锁问题导致的。

我用 pstack 输出了我前面模拟死锁问题的进程的所有线程的情况,我多次执行命令后,其结果都一样,如下:

$ pstack 87746
Thread 3 (Thread 0x7f60a610a700 (LWP 87747)):
#0  0x0000003720e0da1d in __lll_lock_wait () from /lib64/libpthread.so.0
#1  0x0000003720e093ca in _L_lock_829 () from /lib64/libpthread.so.0
#2  0x0000003720e09298 in pthread_mutex_lock () from /lib64/libpthread.so.0
#3  0x0000000000400725 in threadA_proc ()
#4  0x0000003720e07893 in start_thread () from /lib64/libpthread.so.0
#5  0x00000037206f4bfd in clone () from /lib64/libc.so.6
Thread 2 (Thread 0x7f60a5709700 (LWP 87748)):
#0  0x0000003720e0da1d in __lll_lock_wait () from /lib64/libpthread.so.0
#1  0x0000003720e093ca in _L_lock_829 () from /lib64/libpthread.so.0
#2  0x0000003720e09298 in pthread_mutex_lock () from /lib64/libpthread.so.0
#3  0x0000000000400792 in threadB_proc ()
#4  0x0000003720e07893 in start_thread () from /lib64/libpthread.so.0
#5  0x00000037206f4bfd in clone () from /lib64/libc.so.6
Thread 1 (Thread 0x7f60a610c700 (LWP 87746)):
#0  0x0000003720e080e5 in pthread_join () from /lib64/libpthread.so.0
#1  0x0000000000400806 in main ()

....

$ pstack 87746
Thread 3 (Thread 0x7f60a610a700 (LWP 87747)):
#0  0x0000003720e0da1d in __lll_lock_wait () from /lib64/libpthread.so.0
#1  0x0000003720e093ca in _L_lock_829 () from /lib64/libpthread.so.0
#2  0x0000003720e09298 in pthread_mutex_lock () from /lib64/libpthread.so.0
#3  0x0000000000400725 in threadA_proc ()
#4  0x0000003720e07893 in start_thread () from /lib64/libpthread.so.0
#5  0x00000037206f4bfd in clone () from /lib64/libc.so.6
Thread 2 (Thread 0x7f60a5709700 (LWP 87748)):
#0  0x0000003720e0da1d in __lll_lock_wait () from /lib64/libpthread.so.0
#1  0x0000003720e093ca in _L_lock_829 () from /lib64/libpthread.so.0
#2  0x0000003720e09298 in pthread_mutex_lock () from /lib64/libpthread.so.0
#3  0x0000000000400792 in threadB_proc ()
#4  0x0000003720e07893 in start_thread () from /lib64/libpthread.so.0
#5  0x00000037206f4bfd in clone () from /lib64/libc.so.6
Thread 1 (Thread 0x7f60a610c700 (LWP 87746)):
#0  0x0000003720e080e5 in pthread_join () from /lib64/libpthread.so.0
#1  0x0000000000400806 in main ()

可以看到,Thread 2 和 Thread 3 一直阻塞获取锁(pthread_mutex_lock)的过程,而且 pstack 多次输出信息都没有变化,那么可能大概率发生了死锁。

但是,还不能够确认这两个线程是在互相等待对方的锁的释放,因为我们看不到它们是等在哪个锁对象,于是我们可以使用 gdb 工具进一步确认。

整个 gdb 调试过程,如下:

// gdb 命令
$ gdb -p 87746

// 打印所有的线程信息
(gdb) info thread
  3 Thread 0x7f60a610a700 (LWP 87747)  0x0000003720e0da1d in __lll_lock_wait () from /lib64/libpthread.so.0
  2 Thread 0x7f60a5709700 (LWP 87748)  0x0000003720e0da1d in __lll_lock_wait () from /lib64/libpthread.so.0
* 1 Thread 0x7f60a610c700 (LWP 87746)  0x0000003720e080e5 in pthread_join () from /lib64/libpthread.so.0
//最左边的 * 表示 gdb 锁定的线程,切换到第二个线程去查看

// 切换到第2个线程
(gdb) thread 2
[Switching to thread 2 (Thread 0x7f60a5709700 (LWP 87748))]#0  0x0000003720e0da1d in __lll_lock_wait () from /lib64/libpthread.so.0 

// bt 可以打印函数堆栈,却无法看到函数参数,跟 pstack 命令一样 
(gdb) bt
#0  0x0000003720e0da1d in __lll_lock_wait () from /lib64/libpthread.so.0
#1  0x0000003720e093ca in _L_lock_829 () from /lib64/libpthread.so.0
#2  0x0000003720e09298 in pthread_mutex_lock () from /lib64/libpthread.so.0
#3  0x0000000000400792 in threadB_proc (data=0x0) at dead_lock.c:25
#4  0x0000003720e07893 in start_thread () from /lib64/libpthread.so.0
#5  0x00000037206f4bfd in clone () from /lib64/libc.so.6

// 打印第三帧信息,每次函数调用都会有压栈的过程,而 frame 则记录栈中的帧信息
(gdb) frame 3
#3  0x0000000000400792 in threadB_proc (data=0x0) at dead_lock.c:25
27    printf("thread B waiting get ResourceA n");
28    pthread_mutex_lock(&mutex_A);

// 打印mutex_A的值 ,  __owner表示gdb中标示线程的值,即LWP
(gdb) p mutex_A
$1 = {__data = {__lock = 2, __count = 0, __owner = 87747, __nusers = 1, __kind = 0, __spins = 0, __list = {__prev = 0x0, __next = 0x0}}, 
  __size = "

给TA打赏
共{{data.count}}人
人已打赏
图解计算机

5.5 什么是悲观锁、乐观锁?

2023-8-24 16:05:17

图解计算机

5.3 多线程冲突了怎么办?

2023-8-24 16:07:40

0 条回复 A文章作者 M管理员
    暂无讨论,说说你的看法吧
个人中心
购物车
优惠劵
今日签到
有新私信 私信列表
搜索